from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2695, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([15,10,8]))
pari: [g,chi] = znchar(Mod(1028,2695))
Basic properties
Modulus: | \(2695\) | |
Conductor: | \(385\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{385}(258,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2695.bs
\(\chi_{2695}(48,\cdot)\) \(\chi_{2695}(97,\cdot)\) \(\chi_{2695}(587,\cdot)\) \(\chi_{2695}(1028,\cdot)\) \(\chi_{2695}(1567,\cdot)\) \(\chi_{2695}(1763,\cdot)\) \(\chi_{2695}(2253,\cdot)\) \(\chi_{2695}(2302,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Values on generators
\((2157,1816,981)\) → \((-i,-1,e\left(\frac{2}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
\( \chi_{ 2695 }(1028, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(i\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) |
sage: chi.jacobi_sum(n)