Properties

Label 2695.1374
Modulus $2695$
Conductor $2695$
Order $42$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,26,21]))
 
pari: [g,chi] = znchar(Mod(1374,2695))
 

Basic properties

Modulus: \(2695\)
Conductor: \(2695\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2695.ck

\(\chi_{2695}(109,\cdot)\) \(\chi_{2695}(219,\cdot)\) \(\chi_{2695}(494,\cdot)\) \(\chi_{2695}(604,\cdot)\) \(\chi_{2695}(879,\cdot)\) \(\chi_{2695}(989,\cdot)\) \(\chi_{2695}(1264,\cdot)\) \(\chi_{2695}(1374,\cdot)\) \(\chi_{2695}(1649,\cdot)\) \(\chi_{2695}(1759,\cdot)\) \(\chi_{2695}(2034,\cdot)\) \(\chi_{2695}(2144,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((2157,1816,981)\) → \((-1,e\left(\frac{13}{21}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(12\)\(13\)\(16\)\(17\)
\( \chi_{ 2695 }(1374, a) \) \(-1\)\(1\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{5}{42}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{10}{21}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2695 }(1374,a) \;\) at \(\;a = \) e.g. 2