Properties

Label 2695.34
Modulus $2695$
Conductor $245$
Order $14$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,3,0]))
 
pari: [g,chi] = znchar(Mod(34,2695))
 

Basic properties

Modulus: \(2695\)
Conductor: \(245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{245}(34,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2695.bk

\(\chi_{2695}(34,\cdot)\) \(\chi_{2695}(419,\cdot)\) \(\chi_{2695}(804,\cdot)\) \(\chi_{2695}(1189,\cdot)\) \(\chi_{2695}(1574,\cdot)\) \(\chi_{2695}(2344,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\((2157,1816,981)\) → \((-1,e\left(\frac{3}{14}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(12\)\(13\)\(16\)\(17\)
\( \chi_{ 2695 }(34, a) \) \(-1\)\(1\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{6}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2695 }(34,a) \;\) at \(\;a = \) e.g. 2