Properties

Label 2695.da
Modulus $2695$
Conductor $245$
Order $84$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,22,0]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(12,2695))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2695\)
Conductor: \(245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 245.x
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(8\) \(9\) \(12\) \(13\) \(16\) \(17\)
\(\chi_{2695}(12,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{67}{84}\right)\)
\(\chi_{2695}(122,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{23}{84}\right)\)
\(\chi_{2695}(243,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{61}{84}\right)\)
\(\chi_{2695}(353,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{41}{84}\right)\)
\(\chi_{2695}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{43}{84}\right)\)
\(\chi_{2695}(507,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{11}{84}\right)\)
\(\chi_{2695}(628,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{37}{84}\right)\)
\(\chi_{2695}(738,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{29}{84}\right)\)
\(\chi_{2695}(782,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{19}{84}\right)\)
\(\chi_{2695}(892,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{83}{84}\right)\)
\(\chi_{2695}(1013,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{13}{84}\right)\)
\(\chi_{2695}(1123,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{17}{84}\right)\)
\(\chi_{2695}(1167,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{79}{84}\right)\)
\(\chi_{2695}(1277,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{71}{84}\right)\)
\(\chi_{2695}(1398,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{73}{84}\right)\)
\(\chi_{2695}(1508,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{84}\right)\)
\(\chi_{2695}(1552,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{55}{84}\right)\)
\(\chi_{2695}(1662,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{59}{84}\right)\)
\(\chi_{2695}(1937,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{31}{84}\right)\)
\(\chi_{2695}(2047,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{47}{84}\right)\)
\(\chi_{2695}(2168,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{25}{84}\right)\)
\(\chi_{2695}(2278,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{65}{84}\right)\)
\(\chi_{2695}(2553,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{84}\right)\)
\(\chi_{2695}(2663,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{53}{84}\right)\)