Properties

Label 2700.1349
Modulus 27002700
Conductor 1515
Order 22
Real yes
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,1]))
 
pari: [g,chi] = znchar(Mod(1349,2700))
 

Basic properties

Modulus: 27002700
Conductor: 1515
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ15(14,)\chi_{15}(14,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2700.b

χ2700(1349,)\chi_{2700}(1349,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(15)\Q(\sqrt{-15})

Values on generators

(1351,1001,2377)(1351,1001,2377)(1,1,1)(1,-1,-1)

First values

aa 1-11177111113131717191923232929313137374141
χ2700(1349,a) \chi_{ 2700 }(1349, a) 1-1111-11-11-11111111-1111-11-1
sage: chi.jacobi_sum(n)
 
χ2700(1349,a)   \chi_{ 2700 }(1349,a) \; at   a=\;a = e.g. 2