Properties

Label 2700.bh
Modulus $2700$
Conductor $225$
Order $15$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,20,12]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(181,2700))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2700\)
Conductor: \(225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 225.q
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{2700}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{2700}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{2700}(721,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{2700}(1261,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{2700}(1441,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{2700}(1981,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{2700}(2341,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{2700}(2521,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{15}\right)\)