sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2704, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,0,45]))
pari:[g,chi] = znchar(Mod(1919,2704))
χ2704(31,⋅)
χ2704(47,⋅)
χ2704(255,⋅)
χ2704(447,⋅)
χ2704(463,⋅)
χ2704(655,⋅)
χ2704(671,⋅)
χ2704(863,⋅)
χ2704(879,⋅)
χ2704(1071,⋅)
χ2704(1087,⋅)
χ2704(1279,⋅)
χ2704(1295,⋅)
χ2704(1487,⋅)
χ2704(1503,⋅)
χ2704(1695,⋅)
χ2704(1711,⋅)
χ2704(1903,⋅)
χ2704(1919,⋅)
χ2704(2111,⋅)
χ2704(2319,⋅)
χ2704(2335,⋅)
χ2704(2527,⋅)
χ2704(2543,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2367,677,1185) → (−1,1,e(5245))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ2704(1919,a) |
1 | 1 | e(2621) | e(5241) | e(525) | e(138) | e(5233) | e(5231) | e(269) | −i | e(5247) | 1 |
sage:chi.jacobi_sum(n)