Properties

Label 2704.1919
Modulus $2704$
Conductor $676$
Order $52$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2704, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,0,45]))
 
pari: [g,chi] = znchar(Mod(1919,2704))
 

Basic properties

Modulus: \(2704\)
Conductor: \(676\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{676}(567,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2704.ci

\(\chi_{2704}(31,\cdot)\) \(\chi_{2704}(47,\cdot)\) \(\chi_{2704}(255,\cdot)\) \(\chi_{2704}(447,\cdot)\) \(\chi_{2704}(463,\cdot)\) \(\chi_{2704}(655,\cdot)\) \(\chi_{2704}(671,\cdot)\) \(\chi_{2704}(863,\cdot)\) \(\chi_{2704}(879,\cdot)\) \(\chi_{2704}(1071,\cdot)\) \(\chi_{2704}(1087,\cdot)\) \(\chi_{2704}(1279,\cdot)\) \(\chi_{2704}(1295,\cdot)\) \(\chi_{2704}(1487,\cdot)\) \(\chi_{2704}(1503,\cdot)\) \(\chi_{2704}(1695,\cdot)\) \(\chi_{2704}(1711,\cdot)\) \(\chi_{2704}(1903,\cdot)\) \(\chi_{2704}(1919,\cdot)\) \(\chi_{2704}(2111,\cdot)\) \(\chi_{2704}(2319,\cdot)\) \(\chi_{2704}(2335,\cdot)\) \(\chi_{2704}(2527,\cdot)\) \(\chi_{2704}(2543,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((2367,677,1185)\) → \((-1,1,e\left(\frac{45}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 2704 }(1919, a) \) \(1\)\(1\)\(e\left(\frac{21}{26}\right)\)\(e\left(\frac{41}{52}\right)\)\(e\left(\frac{5}{52}\right)\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{33}{52}\right)\)\(e\left(\frac{31}{52}\right)\)\(e\left(\frac{9}{26}\right)\)\(-i\)\(e\left(\frac{47}{52}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2704 }(1919,a) \;\) at \(\;a = \) e.g. 2