from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2736, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,9,15,8]))
pari: [g,chi] = znchar(Mod(617,2736))
Basic properties
Modulus: | \(2736\) | |
Conductor: | \(1368\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1368}(1301,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2736.gf
\(\chi_{2736}(329,\cdot)\) \(\chi_{2736}(617,\cdot)\) \(\chi_{2736}(1049,\cdot)\) \(\chi_{2736}(1145,\cdot)\) \(\chi_{2736}(1289,\cdot)\) \(\chi_{2736}(2297,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | Number field defined by a degree 18 polynomial |
Values on generators
\((1711,2053,1217,1009)\) → \((1,-1,e\left(\frac{5}{6}\right),e\left(\frac{4}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 2736 }(617, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) |
sage: chi.jacobi_sum(n)