Properties

Label 2736.617
Modulus 27362736
Conductor 13681368
Order 1818
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2736, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,9,15,8]))
 
Copy content pari:[g,chi] = znchar(Mod(617,2736))
 

Basic properties

Modulus: 27362736
Conductor: 13681368
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1368(1301,)\chi_{1368}(1301,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2736.gf

χ2736(329,)\chi_{2736}(329,\cdot) χ2736(617,)\chi_{2736}(617,\cdot) χ2736(1049,)\chi_{2736}(1049,\cdot) χ2736(1145,)\chi_{2736}(1145,\cdot) χ2736(1289,)\chi_{2736}(1289,\cdot) χ2736(2297,)\chi_{2736}(2297,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(1711,2053,1217,1009)(1711,2053,1217,1009)(1,1,e(56),e(49))(1,-1,e\left(\frac{5}{6}\right),e\left(\frac{4}{9}\right))

First values

aa 1-111557711111313171723232525292931313535
χ2736(617,a) \chi_{ 2736 }(617, a) 1-111e(79)e\left(\frac{7}{9}\right)11e(23)e\left(\frac{2}{3}\right)e(718)e\left(\frac{7}{18}\right)e(1718)e\left(\frac{17}{18}\right)e(118)e\left(\frac{1}{18}\right)e(59)e\left(\frac{5}{9}\right)e(89)e\left(\frac{8}{9}\right)e(13)e\left(\frac{1}{3}\right)e(79)e\left(\frac{7}{9}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2736(617,a)   \chi_{ 2736 }(617,a) \; at   a=\;a = e.g. 2