Properties

Label 276.239
Modulus $276$
Conductor $276$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(276, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,11,10]))
 
pari: [g,chi] = znchar(Mod(239,276))
 

Basic properties

Modulus: \(276\)
Conductor: \(276\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 276.o

\(\chi_{276}(35,\cdot)\) \(\chi_{276}(59,\cdot)\) \(\chi_{276}(71,\cdot)\) \(\chi_{276}(95,\cdot)\) \(\chi_{276}(119,\cdot)\) \(\chi_{276}(131,\cdot)\) \(\chi_{276}(167,\cdot)\) \(\chi_{276}(179,\cdot)\) \(\chi_{276}(215,\cdot)\) \(\chi_{276}(239,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((139,185,97)\) → \((-1,-1,e\left(\frac{5}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 276 }(239, a) \) \(1\)\(1\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{1}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 276 }(239,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 276 }(239,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 276 }(239,·),\chi_{ 276 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 276 }(239,·)) \;\) at \(\; a,b = \) e.g. 1,2