Properties

Label 2760.1669
Modulus $2760$
Conductor $920$
Order $22$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2760, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,0,11,14]))
 
pari: [g,chi] = znchar(Mod(1669,2760))
 

Basic properties

Modulus: \(2760\)
Conductor: \(920\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{920}(749,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2760.cx

\(\chi_{2760}(349,\cdot)\) \(\chi_{2760}(469,\cdot)\) \(\chi_{2760}(949,\cdot)\) \(\chi_{2760}(1189,\cdot)\) \(\chi_{2760}(1429,\cdot)\) \(\chi_{2760}(1549,\cdot)\) \(\chi_{2760}(1669,\cdot)\) \(\chi_{2760}(1789,\cdot)\) \(\chi_{2760}(2509,\cdot)\) \(\chi_{2760}(2749,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((2071,1381,1841,1657,1201)\) → \((1,-1,1,-1,e\left(\frac{7}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2760 }(1669, a) \) \(1\)\(1\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{2}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2760 }(1669,a) \;\) at \(\;a = \) e.g. 2