Properties

Label 2760.401
Modulus $2760$
Conductor $69$
Order $22$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2760, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,11,0,3]))
 
pari: [g,chi] = znchar(Mod(401,2760))
 

Basic properties

Modulus: \(2760\)
Conductor: \(69\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{69}(56,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2760.cn

\(\chi_{2760}(281,\cdot)\) \(\chi_{2760}(401,\cdot)\) \(\chi_{2760}(521,\cdot)\) \(\chi_{2760}(641,\cdot)\) \(\chi_{2760}(881,\cdot)\) \(\chi_{2760}(1121,\cdot)\) \(\chi_{2760}(1601,\cdot)\) \(\chi_{2760}(1721,\cdot)\) \(\chi_{2760}(2081,\cdot)\) \(\chi_{2760}(2321,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: \(\Q(\zeta_{69})^+\)

Values on generators

\((2071,1381,1841,1657,1201)\) → \((1,1,-1,1,e\left(\frac{3}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2760 }(401, a) \) \(1\)\(1\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{15}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2760 }(401,a) \;\) at \(\;a = \) e.g. 2