Properties

Label 2760.71
Modulus $2760$
Conductor $276$
Order $22$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2760, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,0,11,0,2]))
 
pari: [g,chi] = znchar(Mod(71,2760))
 

Basic properties

Modulus: \(2760\)
Conductor: \(276\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{276}(71,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2760.cp

\(\chi_{2760}(71,\cdot)\) \(\chi_{2760}(311,\cdot)\) \(\chi_{2760}(671,\cdot)\) \(\chi_{2760}(791,\cdot)\) \(\chi_{2760}(1271,\cdot)\) \(\chi_{2760}(1511,\cdot)\) \(\chi_{2760}(1751,\cdot)\) \(\chi_{2760}(1871,\cdot)\) \(\chi_{2760}(1991,\cdot)\) \(\chi_{2760}(2111,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((2071,1381,1841,1657,1201)\) → \((-1,1,-1,1,e\left(\frac{1}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2760 }(71, a) \) \(1\)\(1\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{21}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2760 }(71,a) \;\) at \(\;a = \) e.g. 2