Properties

Label 2783.1015
Modulus 27832783
Conductor 27832783
Order 5555
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2783, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([98,80]))
 
pari: [g,chi] = znchar(Mod(1015,2783))
 

Basic properties

Modulus: 27832783
Conductor: 27832783
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5555
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2783.cp

χ2783(48,)\chi_{2783}(48,\cdot) χ2783(58,)\chi_{2783}(58,\cdot) χ2783(141,)\chi_{2783}(141,\cdot) χ2783(257,)\chi_{2783}(257,\cdot) χ2783(302,)\chi_{2783}(302,\cdot) χ2783(400,)\chi_{2783}(400,\cdot) χ2783(427,)\chi_{2783}(427,\cdot) χ2783(515,)\chi_{2783}(515,\cdot) χ2783(581,)\chi_{2783}(581,\cdot) χ2783(740,)\chi_{2783}(740,\cdot) χ2783(785,)\chi_{2783}(785,\cdot) χ2783(818,)\chi_{2783}(818,\cdot) χ2783(840,)\chi_{2783}(840,\cdot) χ2783(1015,)\chi_{2783}(1015,\cdot) χ2783(1037,)\chi_{2783}(1037,\cdot) χ2783(1076,)\chi_{2783}(1076,\cdot) χ2783(1131,)\chi_{2783}(1131,\cdot) χ2783(1175,)\chi_{2783}(1175,\cdot) χ2783(1182,)\chi_{2783}(1182,\cdot) χ2783(1202,)\chi_{2783}(1202,\cdot) χ2783(1204,)\chi_{2783}(1204,\cdot) χ2783(1214,)\chi_{2783}(1214,\cdot) χ2783(1235,)\chi_{2783}(1235,\cdot) χ2783(1369,)\chi_{2783}(1369,\cdot) χ2783(1411,)\chi_{2783}(1411,\cdot) χ2783(1434,)\chi_{2783}(1434,\cdot) χ2783(1478,)\chi_{2783}(1478,\cdot) χ2783(1501,)\chi_{2783}(1501,\cdot) χ2783(1554,)\chi_{2783}(1554,\cdot) χ2783(1589,)\chi_{2783}(1589,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

(2301,1937)(2301,1937)(e(4955),e(811))(e\left(\frac{49}{55}\right),e\left(\frac{8}{11}\right))

First values

aa 1-111223344556677889910101212
χ2783(1015,a) \chi_{ 2783 }(1015, a) 1111e(1955)e\left(\frac{19}{55}\right)e(255)e\left(\frac{2}{55}\right)e(3855)e\left(\frac{38}{55}\right)e(3655)e\left(\frac{36}{55}\right)e(2155)e\left(\frac{21}{55}\right)e(355)e\left(\frac{3}{55}\right)e(255)e\left(\frac{2}{55}\right)e(455)e\left(\frac{4}{55}\right)11e(811)e\left(\frac{8}{11}\right)
sage: chi.jacobi_sum(n)
 
χ2783(1015,a)   \chi_{ 2783 }(1015,a) \; at   a=\;a = e.g. 2