from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2783, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([98,80]))
pari: [g,chi] = znchar(Mod(1015,2783))
χ2783(48,⋅)
χ2783(58,⋅)
χ2783(141,⋅)
χ2783(257,⋅)
χ2783(302,⋅)
χ2783(400,⋅)
χ2783(427,⋅)
χ2783(515,⋅)
χ2783(581,⋅)
χ2783(740,⋅)
χ2783(785,⋅)
χ2783(818,⋅)
χ2783(840,⋅)
χ2783(1015,⋅)
χ2783(1037,⋅)
χ2783(1076,⋅)
χ2783(1131,⋅)
χ2783(1175,⋅)
χ2783(1182,⋅)
χ2783(1202,⋅)
χ2783(1204,⋅)
χ2783(1214,⋅)
χ2783(1235,⋅)
χ2783(1369,⋅)
χ2783(1411,⋅)
χ2783(1434,⋅)
χ2783(1478,⋅)
χ2783(1501,⋅)
χ2783(1554,⋅)
χ2783(1589,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2301,1937) → (e(5549),e(118))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ2783(1015,a) |
1 | 1 | e(5519) | e(552) | e(5538) | e(5536) | e(5521) | e(553) | e(552) | e(554) | 1 | e(118) |