Properties

Label 2793.1298
Modulus 27932793
Conductor 27932793
Order 126126
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2793, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,111,98]))
 
Copy content pari:[g,chi] = znchar(Mod(1298,2793))
 

Basic properties

Modulus: 27932793
Conductor: 27932793
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 126126
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2793.en

χ2793(5,)\chi_{2793}(5,\cdot) χ2793(101,)\chi_{2793}(101,\cdot) χ2793(131,)\chi_{2793}(131,\cdot) χ2793(320,)\chi_{2793}(320,\cdot) χ2793(332,)\chi_{2793}(332,\cdot) χ2793(404,)\chi_{2793}(404,\cdot) χ2793(479,)\chi_{2793}(479,\cdot) χ2793(500,)\chi_{2793}(500,\cdot) χ2793(530,)\chi_{2793}(530,\cdot) χ2793(719,)\chi_{2793}(719,\cdot) χ2793(731,)\chi_{2793}(731,\cdot) χ2793(878,)\chi_{2793}(878,\cdot) χ2793(899,)\chi_{2793}(899,\cdot) χ2793(929,)\chi_{2793}(929,\cdot) χ2793(1118,)\chi_{2793}(1118,\cdot) χ2793(1130,)\chi_{2793}(1130,\cdot) χ2793(1202,)\chi_{2793}(1202,\cdot) χ2793(1277,)\chi_{2793}(1277,\cdot) χ2793(1298,)\chi_{2793}(1298,\cdot) χ2793(1328,)\chi_{2793}(1328,\cdot) χ2793(1517,)\chi_{2793}(1517,\cdot) χ2793(1529,)\chi_{2793}(1529,\cdot) χ2793(1601,)\chi_{2793}(1601,\cdot) χ2793(1676,)\chi_{2793}(1676,\cdot) χ2793(1727,)\chi_{2793}(1727,\cdot) χ2793(1916,)\chi_{2793}(1916,\cdot) χ2793(1928,)\chi_{2793}(1928,\cdot) χ2793(2000,)\chi_{2793}(2000,\cdot) χ2793(2075,)\chi_{2793}(2075,\cdot) χ2793(2096,)\chi_{2793}(2096,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(3742),e(79))(-1,e\left(\frac{37}{42}\right),e\left(\frac{7}{9}\right))

First values

aa 1-11122445588101011111313161617172020
χ2793(1298,a) \chi_{ 2793 }(1298, a) 1111e(23126)e\left(\frac{23}{126}\right)e(2363)e\left(\frac{23}{63}\right)e(3163)e\left(\frac{31}{63}\right)e(2342)e\left(\frac{23}{42}\right)e(85126)e\left(\frac{85}{126}\right)e(114)e\left(\frac{1}{14}\right)e(121126)e\left(\frac{121}{126}\right)e(4663)e\left(\frac{46}{63}\right)e(1963)e\left(\frac{19}{63}\right)e(67)e\left(\frac{6}{7}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2793(1298,a)   \chi_{ 2793 }(1298,a) \; at   a=\;a = e.g. 2