sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,111,98]))
pari:[g,chi] = znchar(Mod(1298,2793))
Modulus: | 2793 | |
Conductor: | 2793 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 126 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2793(5,⋅)
χ2793(101,⋅)
χ2793(131,⋅)
χ2793(320,⋅)
χ2793(332,⋅)
χ2793(404,⋅)
χ2793(479,⋅)
χ2793(500,⋅)
χ2793(530,⋅)
χ2793(719,⋅)
χ2793(731,⋅)
χ2793(878,⋅)
χ2793(899,⋅)
χ2793(929,⋅)
χ2793(1118,⋅)
χ2793(1130,⋅)
χ2793(1202,⋅)
χ2793(1277,⋅)
χ2793(1298,⋅)
χ2793(1328,⋅)
χ2793(1517,⋅)
χ2793(1529,⋅)
χ2793(1601,⋅)
χ2793(1676,⋅)
χ2793(1727,⋅)
χ2793(1916,⋅)
χ2793(1928,⋅)
χ2793(2000,⋅)
χ2793(2075,⋅)
χ2793(2096,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(4237),e(97))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(1298,a) |
1 | 1 | e(12623) | e(6323) | e(6331) | e(4223) | e(12685) | e(141) | e(126121) | e(6346) | e(6319) | e(76) |
sage:chi.jacobi_sum(n)