Properties

Label 2793.1328
Modulus 27932793
Conductor 27932793
Order 126126
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,87,70]))
 
pari: [g,chi] = znchar(Mod(1328,2793))
 

Basic properties

Modulus: 27932793
Conductor: 27932793
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.en

χ2793(5,)\chi_{2793}(5,\cdot) χ2793(101,)\chi_{2793}(101,\cdot) χ2793(131,)\chi_{2793}(131,\cdot) χ2793(320,)\chi_{2793}(320,\cdot) χ2793(332,)\chi_{2793}(332,\cdot) χ2793(404,)\chi_{2793}(404,\cdot) χ2793(479,)\chi_{2793}(479,\cdot) χ2793(500,)\chi_{2793}(500,\cdot) χ2793(530,)\chi_{2793}(530,\cdot) χ2793(719,)\chi_{2793}(719,\cdot) χ2793(731,)\chi_{2793}(731,\cdot) χ2793(878,)\chi_{2793}(878,\cdot) χ2793(899,)\chi_{2793}(899,\cdot) χ2793(929,)\chi_{2793}(929,\cdot) χ2793(1118,)\chi_{2793}(1118,\cdot) χ2793(1130,)\chi_{2793}(1130,\cdot) χ2793(1202,)\chi_{2793}(1202,\cdot) χ2793(1277,)\chi_{2793}(1277,\cdot) χ2793(1298,)\chi_{2793}(1298,\cdot) χ2793(1328,)\chi_{2793}(1328,\cdot) χ2793(1517,)\chi_{2793}(1517,\cdot) χ2793(1529,)\chi_{2793}(1529,\cdot) χ2793(1601,)\chi_{2793}(1601,\cdot) χ2793(1676,)\chi_{2793}(1676,\cdot) χ2793(1727,)\chi_{2793}(1727,\cdot) χ2793(1916,)\chi_{2793}(1916,\cdot) χ2793(1928,)\chi_{2793}(1928,\cdot) χ2793(2000,)\chi_{2793}(2000,\cdot) χ2793(2075,)\chi_{2793}(2075,\cdot) χ2793(2096,)\chi_{2793}(2096,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(2942),e(59))(-1,e\left(\frac{29}{42}\right),e\left(\frac{5}{9}\right))

First values

aa 1-11122445588101011111313161617172020
χ2793(1328,a) \chi_{ 2793 }(1328, a) 1111e(1126)e\left(\frac{1}{126}\right)e(163)e\left(\frac{1}{63}\right)e(2663)e\left(\frac{26}{63}\right)e(142)e\left(\frac{1}{42}\right)e(53126)e\left(\frac{53}{126}\right)e(1114)e\left(\frac{11}{14}\right)e(71126)e\left(\frac{71}{126}\right)e(263)e\left(\frac{2}{63}\right)e(2063)e\left(\frac{20}{63}\right)e(37)e\left(\frac{3}{7}\right)
sage: chi.jacobi_sum(n)
 
χ2793(1328,a)   \chi_{ 2793 }(1328,a) \; at   a=\;a = e.g. 2