from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,87,70]))
pari: [g,chi] = znchar(Mod(1328,2793))
χ2793(5,⋅)
χ2793(101,⋅)
χ2793(131,⋅)
χ2793(320,⋅)
χ2793(332,⋅)
χ2793(404,⋅)
χ2793(479,⋅)
χ2793(500,⋅)
χ2793(530,⋅)
χ2793(719,⋅)
χ2793(731,⋅)
χ2793(878,⋅)
χ2793(899,⋅)
χ2793(929,⋅)
χ2793(1118,⋅)
χ2793(1130,⋅)
χ2793(1202,⋅)
χ2793(1277,⋅)
χ2793(1298,⋅)
χ2793(1328,⋅)
χ2793(1517,⋅)
χ2793(1529,⋅)
χ2793(1601,⋅)
χ2793(1676,⋅)
χ2793(1727,⋅)
χ2793(1916,⋅)
χ2793(1928,⋅)
χ2793(2000,⋅)
χ2793(2075,⋅)
χ2793(2096,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(4229),e(95))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(1328,a) |
1 | 1 | e(1261) | e(631) | e(6326) | e(421) | e(12653) | e(1411) | e(12671) | e(632) | e(6320) | e(73) |