Properties

Label 2793.1412
Modulus $2793$
Conductor $2793$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,69,98]))
 
pari: [g,chi] = znchar(Mod(1412,2793))
 

Basic properties

Modulus: \(2793\)
Conductor: \(2793\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(126\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.ef

\(\chi_{2793}(17,\cdot)\) \(\chi_{2793}(47,\cdot)\) \(\chi_{2793}(194,\cdot)\) \(\chi_{2793}(206,\cdot)\) \(\chi_{2793}(290,\cdot)\) \(\chi_{2793}(416,\cdot)\) \(\chi_{2793}(446,\cdot)\) \(\chi_{2793}(593,\cdot)\) \(\chi_{2793}(605,\cdot)\) \(\chi_{2793}(614,\cdot)\) \(\chi_{2793}(689,\cdot)\) \(\chi_{2793}(845,\cdot)\) \(\chi_{2793}(992,\cdot)\) \(\chi_{2793}(1004,\cdot)\) \(\chi_{2793}(1013,\cdot)\) \(\chi_{2793}(1088,\cdot)\) \(\chi_{2793}(1214,\cdot)\) \(\chi_{2793}(1412,\cdot)\) \(\chi_{2793}(1487,\cdot)\) \(\chi_{2793}(1613,\cdot)\) \(\chi_{2793}(1643,\cdot)\) \(\chi_{2793}(1790,\cdot)\) \(\chi_{2793}(1802,\cdot)\) \(\chi_{2793}(1811,\cdot)\) \(\chi_{2793}(1886,\cdot)\) \(\chi_{2793}(2012,\cdot)\) \(\chi_{2793}(2042,\cdot)\) \(\chi_{2793}(2189,\cdot)\) \(\chi_{2793}(2201,\cdot)\) \(\chi_{2793}(2210,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((932,2110,2206)\) → \((-1,e\left(\frac{23}{42}\right),e\left(\frac{7}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 2793 }(1412, a) \) \(1\)\(1\)\(e\left(\frac{65}{126}\right)\)\(e\left(\frac{2}{63}\right)\)\(e\left(\frac{52}{63}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{43}{126}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{121}{126}\right)\)\(e\left(\frac{4}{63}\right)\)\(e\left(\frac{61}{63}\right)\)\(e\left(\frac{6}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2793 }(1412,a) \;\) at \(\;a = \) e.g. 2