from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,111,28]))
pari: [g,chi] = znchar(Mod(1004,2793))
χ2793(17,⋅)
χ2793(47,⋅)
χ2793(194,⋅)
χ2793(206,⋅)
χ2793(290,⋅)
χ2793(416,⋅)
χ2793(446,⋅)
χ2793(593,⋅)
χ2793(605,⋅)
χ2793(614,⋅)
χ2793(689,⋅)
χ2793(845,⋅)
χ2793(992,⋅)
χ2793(1004,⋅)
χ2793(1013,⋅)
χ2793(1088,⋅)
χ2793(1214,⋅)
χ2793(1412,⋅)
χ2793(1487,⋅)
χ2793(1613,⋅)
χ2793(1643,⋅)
χ2793(1790,⋅)
χ2793(1802,⋅)
χ2793(1811,⋅)
χ2793(1886,⋅)
χ2793(2012,⋅)
χ2793(2042,⋅)
χ2793(2189,⋅)
χ2793(2201,⋅)
χ2793(2210,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(4237),e(92))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(1004,a) |
1 | 1 | e(12679) | e(6316) | e(6338) | e(4237) | e(12629) | e(4217) | e(12623) | e(6332) | e(6347) | e(76) |