Properties

Label 2793.113
Modulus 27932793
Conductor 27932793
Order 1414
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,10,7]))
 
pari: [g,chi] = znchar(Mod(113,2793))
 

Basic properties

Modulus: 27932793
Conductor: 27932793
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1414
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.bu

χ2793(113,)\chi_{2793}(113,\cdot) χ2793(512,)\chi_{2793}(512,\cdot) χ2793(911,)\chi_{2793}(911,\cdot) χ2793(1310,)\chi_{2793}(1310,\cdot) χ2793(1709,)\chi_{2793}(1709,\cdot) χ2793(2507,)\chi_{2793}(2507,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(57),1)(-1,e\left(\frac{5}{7}\right),-1)

First values

aa 1-11122445588101011111313161617172020
χ2793(113,a) \chi_{ 2793 }(113, a) 1111e(47)e\left(\frac{4}{7}\right)e(17)e\left(\frac{1}{7}\right)e(314)e\left(\frac{3}{14}\right)e(57)e\left(\frac{5}{7}\right)e(1114)e\left(\frac{11}{14}\right)e(114)e\left(\frac{1}{14}\right)e(114)e\left(\frac{1}{14}\right)e(27)e\left(\frac{2}{7}\right)e(514)e\left(\frac{5}{14}\right)e(514)e\left(\frac{5}{14}\right)
sage: chi.jacobi_sum(n)
 
χ2793(113,a)   \chi_{ 2793 }(113,a) \; at   a=\;a = e.g. 2