sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,3,28]))
pari:[g,chi] = znchar(Mod(125,2793))
Modulus: | 2793 | |
Conductor: | 2793 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 42 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2793(83,⋅)
χ2793(125,⋅)
χ2793(482,⋅)
χ2793(524,⋅)
χ2793(923,⋅)
χ2793(1280,⋅)
χ2793(1679,⋅)
χ2793(1721,⋅)
χ2793(2078,⋅)
χ2793(2120,⋅)
χ2793(2477,⋅)
χ2793(2519,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(141),e(32))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(125,a) |
1 | 1 | e(421) | e(211) | e(215) | e(141) | e(4211) | e(145) | e(4229) | e(212) | e(2120) | e(72) |
sage:chi.jacobi_sum(n)