Properties

Label 2793.125
Modulus 27932793
Conductor 27932793
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,3,28]))
 
pari: [g,chi] = znchar(Mod(125,2793))
 

Basic properties

Modulus: 27932793
Conductor: 27932793
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.dm

χ2793(83,)\chi_{2793}(83,\cdot) χ2793(125,)\chi_{2793}(125,\cdot) χ2793(482,)\chi_{2793}(482,\cdot) χ2793(524,)\chi_{2793}(524,\cdot) χ2793(923,)\chi_{2793}(923,\cdot) χ2793(1280,)\chi_{2793}(1280,\cdot) χ2793(1679,)\chi_{2793}(1679,\cdot) χ2793(1721,)\chi_{2793}(1721,\cdot) χ2793(2078,)\chi_{2793}(2078,\cdot) χ2793(2120,)\chi_{2793}(2120,\cdot) χ2793(2477,)\chi_{2793}(2477,\cdot) χ2793(2519,)\chi_{2793}(2519,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(114),e(23))(-1,e\left(\frac{1}{14}\right),e\left(\frac{2}{3}\right))

First values

aa 1-11122445588101011111313161617172020
χ2793(125,a) \chi_{ 2793 }(125, a) 1111e(142)e\left(\frac{1}{42}\right)e(121)e\left(\frac{1}{21}\right)e(521)e\left(\frac{5}{21}\right)e(114)e\left(\frac{1}{14}\right)e(1142)e\left(\frac{11}{42}\right)e(514)e\left(\frac{5}{14}\right)e(2942)e\left(\frac{29}{42}\right)e(221)e\left(\frac{2}{21}\right)e(2021)e\left(\frac{20}{21}\right)e(27)e\left(\frac{2}{7}\right)
sage: chi.jacobi_sum(n)
 
χ2793(125,a)   \chi_{ 2793 }(125,a) \; at   a=\;a = e.g. 2