Properties

Label 2793.1354
Modulus $2793$
Conductor $133$
Order $18$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,16]))
 
pari: [g,chi] = znchar(Mod(1354,2793))
 

Basic properties

Modulus: \(2793\)
Conductor: \(133\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{133}(24,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.cb

\(\chi_{2793}(313,\cdot)\) \(\chi_{2793}(460,\cdot)\) \(\chi_{2793}(472,\cdot)\) \(\chi_{2793}(1354,\cdot)\) \(\chi_{2793}(2077,\cdot)\) \(\chi_{2793}(2677,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.1369393352927188877370217151752183.2

Values on generators

\((932,2110,2206)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 2793 }(1354, a) \) \(-1\)\(1\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2793 }(1354,a) \;\) at \(\;a = \) e.g. 2