Properties

Label 2793.1354
Modulus 27932793
Conductor 133133
Order 1818
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,16]))
 
pari: [g,chi] = znchar(Mod(1354,2793))
 

Basic properties

Modulus: 27932793
Conductor: 133133
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ133(24,)\chi_{133}(24,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.cb

χ2793(313,)\chi_{2793}(313,\cdot) χ2793(460,)\chi_{2793}(460,\cdot) χ2793(472,)\chi_{2793}(472,\cdot) χ2793(1354,)\chi_{2793}(1354,\cdot) χ2793(2077,)\chi_{2793}(2077,\cdot) χ2793(2677,)\chi_{2793}(2677,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.0.1369393352927188877370217151752183.2

Values on generators

(932,2110,2206)(932,2110,2206)(1,e(16),e(89))(1,e\left(\frac{1}{6}\right),e\left(\frac{8}{9}\right))

First values

aa 1-11122445588101011111313161617172020
χ2793(1354,a) \chi_{ 2793 }(1354, a) 1-111e(29)e\left(\frac{2}{9}\right)e(49)e\left(\frac{4}{9}\right)e(118)e\left(\frac{1}{18}\right)e(23)e\left(\frac{2}{3}\right)e(518)e\left(\frac{5}{18}\right)e(13)e\left(\frac{1}{3}\right)e(1718)e\left(\frac{17}{18}\right)e(89)e\left(\frac{8}{9}\right)e(118)e\left(\frac{1}{18}\right)1-1
sage: chi.jacobi_sum(n)
 
χ2793(1354,a)   \chi_{ 2793 }(1354,a) \; at   a=\;a = e.g. 2