from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,96,28]))
pari: [g,chi] = znchar(Mod(2144,2793))
χ2793(137,⋅)
χ2793(149,⋅)
χ2793(158,⋅)
χ2793(233,⋅)
χ2793(359,⋅)
χ2793(389,⋅)
χ2793(536,⋅)
χ2793(548,⋅)
χ2793(632,⋅)
χ2793(758,⋅)
χ2793(788,⋅)
χ2793(935,⋅)
χ2793(947,⋅)
χ2793(956,⋅)
χ2793(1031,⋅)
χ2793(1187,⋅)
χ2793(1334,⋅)
χ2793(1346,⋅)
χ2793(1355,⋅)
χ2793(1430,⋅)
χ2793(1556,⋅)
χ2793(1754,⋅)
χ2793(1829,⋅)
χ2793(1955,⋅)
χ2793(1985,⋅)
χ2793(2132,⋅)
χ2793(2144,⋅)
χ2793(2153,⋅)
χ2793(2228,⋅)
χ2793(2354,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(2116),e(92))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(2144,a) |
−1 | 1 | e(12667) | e(634) | e(12619) | e(4225) | e(6343) | e(149) | e(6316) | e(638) | e(12697) | e(143) |