Properties

Label 2835.1061
Modulus $2835$
Conductor $189$
Order $18$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2835, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,12]))
 
pari: [g,chi] = znchar(Mod(1061,2835))
 

Basic properties

Modulus: \(2835\)
Conductor: \(189\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{189}(137,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2835.cv

\(\chi_{2835}(116,\cdot)\) \(\chi_{2835}(611,\cdot)\) \(\chi_{2835}(1061,\cdot)\) \(\chi_{2835}(1556,\cdot)\) \(\chi_{2835}(2006,\cdot)\) \(\chi_{2835}(2501,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1541,1702,2026)\) → \((e\left(\frac{1}{18}\right),1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 2835 }(1061, a) \) \(-1\)\(1\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(-1\)\(1\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{17}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2835 }(1061,a) \;\) at \(\;a = \) e.g. 2