sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2835, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([37,0,18]))
pari:[g,chi] = znchar(Mod(191,2835))
χ2835(191,⋅)
χ2835(221,⋅)
χ2835(506,⋅)
χ2835(536,⋅)
χ2835(821,⋅)
χ2835(851,⋅)
χ2835(1136,⋅)
χ2835(1166,⋅)
χ2835(1451,⋅)
χ2835(1481,⋅)
χ2835(1766,⋅)
χ2835(1796,⋅)
χ2835(2081,⋅)
χ2835(2111,⋅)
χ2835(2396,⋅)
χ2835(2426,⋅)
χ2835(2711,⋅)
χ2835(2741,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1541,1702,2026) → (e(5437),1,e(31))
a |
−1 | 1 | 2 | 4 | 8 | 11 | 13 | 16 | 17 | 19 | 22 | 23 |
χ2835(191,a) |
−1 | 1 | e(5419) | e(2719) | e(181) | e(5413) | e(2713) | e(2711) | e(1817) | e(95) | e(2716) | e(5411) |
sage:chi.jacobi_sum(n)