Properties

Label 2835.191
Modulus $2835$
Conductor $567$
Order $54$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2835, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([37,0,18]))
 
pari: [g,chi] = znchar(Mod(191,2835))
 

Basic properties

Modulus: \(2835\)
Conductor: \(567\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{567}(191,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2835.ek

\(\chi_{2835}(191,\cdot)\) \(\chi_{2835}(221,\cdot)\) \(\chi_{2835}(506,\cdot)\) \(\chi_{2835}(536,\cdot)\) \(\chi_{2835}(821,\cdot)\) \(\chi_{2835}(851,\cdot)\) \(\chi_{2835}(1136,\cdot)\) \(\chi_{2835}(1166,\cdot)\) \(\chi_{2835}(1451,\cdot)\) \(\chi_{2835}(1481,\cdot)\) \(\chi_{2835}(1766,\cdot)\) \(\chi_{2835}(1796,\cdot)\) \(\chi_{2835}(2081,\cdot)\) \(\chi_{2835}(2111,\cdot)\) \(\chi_{2835}(2396,\cdot)\) \(\chi_{2835}(2426,\cdot)\) \(\chi_{2835}(2711,\cdot)\) \(\chi_{2835}(2741,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((1541,1702,2026)\) → \((e\left(\frac{37}{54}\right),1,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 2835 }(191, a) \) \(-1\)\(1\)\(e\left(\frac{19}{54}\right)\)\(e\left(\frac{19}{27}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{13}{54}\right)\)\(e\left(\frac{13}{27}\right)\)\(e\left(\frac{11}{27}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{16}{27}\right)\)\(e\left(\frac{11}{54}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2835 }(191,a) \;\) at \(\;a = \) e.g. 2