Properties

Label 2835.2339
Modulus $2835$
Conductor $135$
Order $18$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2835, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([17,9,0]))
 
pari: [g,chi] = znchar(Mod(2339,2835))
 

Basic properties

Modulus: \(2835\)
Conductor: \(135\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{135}(14,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2835.cn

\(\chi_{2835}(449,\cdot)\) \(\chi_{2835}(764,\cdot)\) \(\chi_{2835}(1394,\cdot)\) \(\chi_{2835}(1709,\cdot)\) \(\chi_{2835}(2339,\cdot)\) \(\chi_{2835}(2654,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.5770142004982097067662109375.1

Values on generators

\((1541,1702,2026)\) → \((e\left(\frac{17}{18}\right),-1,1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 2835 }(2339, a) \) \(-1\)\(1\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{8}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2835 }(2339,a) \;\) at \(\;a = \) e.g. 2