Properties

Label 2835.2774
Modulus $2835$
Conductor $2835$
Order $54$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2835, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([25,27,18]))
 
pari: [g,chi] = znchar(Mod(2774,2835))
 

Basic properties

Modulus: \(2835\)
Conductor: \(2835\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2835.ei

\(\chi_{2835}(254,\cdot)\) \(\chi_{2835}(284,\cdot)\) \(\chi_{2835}(569,\cdot)\) \(\chi_{2835}(599,\cdot)\) \(\chi_{2835}(884,\cdot)\) \(\chi_{2835}(914,\cdot)\) \(\chi_{2835}(1199,\cdot)\) \(\chi_{2835}(1229,\cdot)\) \(\chi_{2835}(1514,\cdot)\) \(\chi_{2835}(1544,\cdot)\) \(\chi_{2835}(1829,\cdot)\) \(\chi_{2835}(1859,\cdot)\) \(\chi_{2835}(2144,\cdot)\) \(\chi_{2835}(2174,\cdot)\) \(\chi_{2835}(2459,\cdot)\) \(\chi_{2835}(2489,\cdot)\) \(\chi_{2835}(2774,\cdot)\) \(\chi_{2835}(2804,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((1541,1702,2026)\) → \((e\left(\frac{25}{54}\right),-1,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 2835 }(2774, a) \) \(-1\)\(1\)\(e\left(\frac{17}{27}\right)\)\(e\left(\frac{7}{27}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{19}{54}\right)\)\(e\left(\frac{11}{54}\right)\)\(e\left(\frac{14}{27}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{53}{54}\right)\)\(e\left(\frac{7}{27}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2835 }(2774,a) \;\) at \(\;a = \) e.g. 2