Properties

Label 284.261
Modulus $284$
Conductor $71$
Order $7$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(284, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10]))
 
pari: [g,chi] = znchar(Mod(261,284))
 

Basic properties

Modulus: \(284\)
Conductor: \(71\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(7\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{71}(48,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 284.f

\(\chi_{284}(37,\cdot)\) \(\chi_{284}(45,\cdot)\) \(\chi_{284}(101,\cdot)\) \(\chi_{284}(233,\cdot)\) \(\chi_{284}(245,\cdot)\) \(\chi_{284}(261,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 7.7.128100283921.1

Values on generators

\((143,149)\) → \((1,e\left(\frac{5}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 284 }(261, a) \) \(1\)\(1\)\(e\left(\frac{4}{7}\right)\)\(1\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{2}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 284 }(261,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 284 }(261,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 284 }(261,·),\chi_{ 284 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 284 }(261,·)) \;\) at \(\; a,b = \) e.g. 1,2