Properties

Label 2856.1517
Modulus 28562856
Conductor 28562856
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2856, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,6,6,10,9]))
 
Copy content pari:[g,chi] = znchar(Mod(1517,2856))
 

Basic properties

Modulus: 28562856
Conductor: 28562856
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1212
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2856.eg

χ2856(1109,)\chi_{2856}(1109,\cdot) χ2856(1517,)\chi_{2856}(1517,\cdot) χ2856(1781,)\chi_{2856}(1781,\cdot) χ2856(2189,)\chi_{2856}(2189,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.6401594233356076787154812928.1

Values on generators

(2143,1429,953,409,2689)(2143,1429,953,409,2689)(1,1,1,e(56),i)(1,-1,-1,e\left(\frac{5}{6}\right),-i)

First values

aa 1-11155111113131919232325252929313137374141
χ2856(1517,a) \chi_{ 2856 }(1517, a) 1111e(1112)e\left(\frac{11}{12}\right)e(712)e\left(\frac{7}{12}\right)11e(16)e\left(\frac{1}{6}\right)e(512)e\left(\frac{5}{12}\right)e(56)e\left(\frac{5}{6}\right)i-ie(712)e\left(\frac{7}{12}\right)e(1112)e\left(\frac{11}{12}\right)ii
Copy content sage:chi.jacobi_sum(n)
 
χ2856(1517,a)   \chi_{ 2856 }(1517,a) \; at   a=\;a = e.g. 2