Properties

Label 2856.2845
Modulus $2856$
Conductor $952$
Order $48$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2856, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,24,0,8,45]))
 
pari: [g,chi] = znchar(Mod(2845,2856))
 

Basic properties

Modulus: \(2856\)
Conductor: \(952\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{952}(941,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2856.fv

\(\chi_{2856}(61,\cdot)\) \(\chi_{2856}(397,\cdot)\) \(\chi_{2856}(997,\cdot)\) \(\chi_{2856}(1333,\cdot)\) \(\chi_{2856}(1405,\cdot)\) \(\chi_{2856}(1501,\cdot)\) \(\chi_{2856}(1669,\cdot)\) \(\chi_{2856}(1741,\cdot)\) \(\chi_{2856}(1909,\cdot)\) \(\chi_{2856}(2077,\cdot)\) \(\chi_{2856}(2173,\cdot)\) \(\chi_{2856}(2341,\cdot)\) \(\chi_{2856}(2509,\cdot)\) \(\chi_{2856}(2581,\cdot)\) \(\chi_{2856}(2749,\cdot)\) \(\chi_{2856}(2845,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((2143,1429,953,409,2689)\) → \((1,-1,1,e\left(\frac{1}{6}\right),e\left(\frac{15}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2856 }(2845, a) \) \(1\)\(1\)\(e\left(\frac{1}{48}\right)\)\(e\left(\frac{35}{48}\right)\)\(-i\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{19}{48}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{29}{48}\right)\)\(e\left(\frac{37}{48}\right)\)\(e\left(\frac{13}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2856 }(2845,a) \;\) at \(\;a = \) e.g. 2