sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2856, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,24,0,8,45]))
pari:[g,chi] = znchar(Mod(2845,2856))
χ2856(61,⋅)
χ2856(397,⋅)
χ2856(997,⋅)
χ2856(1333,⋅)
χ2856(1405,⋅)
χ2856(1501,⋅)
χ2856(1669,⋅)
χ2856(1741,⋅)
χ2856(1909,⋅)
χ2856(2077,⋅)
χ2856(2173,⋅)
χ2856(2341,⋅)
χ2856(2509,⋅)
χ2856(2581,⋅)
χ2856(2749,⋅)
χ2856(2845,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2143,1429,953,409,2689) → (1,−1,1,e(61),e(1615))
a |
−1 | 1 | 5 | 11 | 13 | 19 | 23 | 25 | 29 | 31 | 37 | 41 |
χ2856(2845,a) |
1 | 1 | e(481) | e(4835) | −i | e(2411) | e(4819) | e(241) | e(1611) | e(4829) | e(4837) | e(1613) |
sage:chi.jacobi_sum(n)