Properties

Label 2856.en
Modulus $2856$
Conductor $119$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2856, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,8,13]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(97,2856))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2856\)
Conductor: \(119\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 119.p
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.16501299269766837593302193.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{2856}(97,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{2856}(265,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{2856}(601,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{2856}(1609,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{2856}(1945,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{2856}(2113,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{2856}(2281,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{2856}(2785,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{11}{16}\right)\)