Properties

Label 2856.ez
Modulus $2856$
Conductor $2856$
Order $24$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2856, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,12,12,4,15]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(59,2856))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2856\)
Conductor: \(2856\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.0.201336748083306095961389068891776734916463808834202859732992.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{2856}(59,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{2856}(467,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{2856}(563,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{2856}(899,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{2856}(971,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{2856}(1307,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{2856}(1403,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{2856}(1811,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{3}{8}\right)\)