Properties

Label 288.155
Modulus 288288
Conductor 288288
Order 2424
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,3,4]))
 
Copy content pari:[g,chi] = znchar(Mod(155,288))
 

Basic properties

Modulus: 288288
Conductor: 288288
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 2424
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 288.bf

χ288(11,)\chi_{288}(11,\cdot) χ288(59,)\chi_{288}(59,\cdot) χ288(83,)\chi_{288}(83,\cdot) χ288(131,)\chi_{288}(131,\cdot) χ288(155,)\chi_{288}(155,\cdot) χ288(203,)\chi_{288}(203,\cdot) χ288(227,)\chi_{288}(227,\cdot) χ288(275,)\chi_{288}(275,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ24)\Q(\zeta_{24})
Fixed field: 24.24.1486465269728735333725176976133731985582456832.1

Values on generators

(127,37,65)(127,37,65)(1,e(18),e(16))(-1,e\left(\frac{1}{8}\right),e\left(\frac{1}{6}\right))

First values

aa 1-111557711111313171719192323252529293131
χ288(155,a) \chi_{ 288 }(155, a) 1111e(2324)e\left(\frac{23}{24}\right)e(512)e\left(\frac{5}{12}\right)e(724)e\left(\frac{7}{24}\right)e(524)e\left(\frac{5}{24}\right)11e(38)e\left(\frac{3}{8}\right)e(112)e\left(\frac{1}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(1324)e\left(\frac{13}{24}\right)e(56)e\left(\frac{5}{6}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ288(155,a)   \chi_{ 288 }(155,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ288(155,))   \tau_{ a }( \chi_{ 288 }(155,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ288(155,),χ288(n,))   J(\chi_{ 288 }(155,·),\chi_{ 288 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ288(155,))  K(a,b,\chi_{ 288 }(155,·)) \; at   a,b=\; a,b = e.g. 1,2