sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(288, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,3,4]))
pari:[g,chi] = znchar(Mod(155,288))
Modulus: | 288 | |
Conductor: | 288 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 24 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ288(11,⋅)
χ288(59,⋅)
χ288(83,⋅)
χ288(131,⋅)
χ288(155,⋅)
χ288(203,⋅)
χ288(227,⋅)
χ288(275,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(127,37,65) → (−1,e(81),e(61))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ288(155,a) |
1 | 1 | e(2423) | e(125) | e(247) | e(245) | 1 | e(83) | e(121) | e(1211) | e(2413) | e(65) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)