Properties

Label 2888.1689
Modulus $2888$
Conductor $19$
Order $9$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2888, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,10]))
 
pari: [g,chi] = znchar(Mod(1689,2888))
 

Basic properties

Modulus: \(2888\)
Conductor: \(19\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(9\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{19}(17,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2888.q

\(\chi_{2888}(1137,\cdot)\) \(\chi_{2888}(1145,\cdot)\) \(\chi_{2888}(1689,\cdot)\) \(\chi_{2888}(1833,\cdot)\) \(\chi_{2888}(2265,\cdot)\) \(\chi_{2888}(2761,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: \(\Q(\zeta_{19})^+\)

Values on generators

\((2167,1445,2529)\) → \((1,1,e\left(\frac{5}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 2888 }(1689, a) \) \(1\)\(1\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2888 }(1689,a) \;\) at \(\;a = \) e.g. 2