Properties

Label 2888.1689
Modulus 28882888
Conductor 1919
Order 99
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,0,10]))
 
Copy content pari:[g,chi] = znchar(Mod(1689,2888))
 

Basic properties

Modulus: 28882888
Conductor: 1919
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 99
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ19(17,)\chi_{19}(17,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2888.q

χ2888(1137,)\chi_{2888}(1137,\cdot) χ2888(1145,)\chi_{2888}(1145,\cdot) χ2888(1689,)\chi_{2888}(1689,\cdot) χ2888(1833,)\chi_{2888}(1833,\cdot) χ2888(2265,)\chi_{2888}(2265,\cdot) χ2888(2761,)\chi_{2888}(2761,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Q(ζ19)+\Q(\zeta_{19})^+

Values on generators

(2167,1445,2529)(2167,1445,2529)(1,1,e(59))(1,1,e\left(\frac{5}{9}\right))

First values

aa 1-11133557799111113131515171721212323
χ2888(1689,a) \chi_{ 2888 }(1689, a) 1111e(29)e\left(\frac{2}{9}\right)e(89)e\left(\frac{8}{9}\right)e(13)e\left(\frac{1}{3}\right)e(49)e\left(\frac{4}{9}\right)e(23)e\left(\frac{2}{3}\right)e(79)e\left(\frac{7}{9}\right)e(19)e\left(\frac{1}{9}\right)e(59)e\left(\frac{5}{9}\right)e(59)e\left(\frac{5}{9}\right)e(19)e\left(\frac{1}{9}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2888(1689,a)   \chi_{ 2888 }(1689,a) \; at   a=\;a = e.g. 2