from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2888, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,0,10]))
pari: [g,chi] = znchar(Mod(1689,2888))
Basic properties
Modulus: | \(2888\) | |
Conductor: | \(19\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(9\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{19}(17,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2888.q
\(\chi_{2888}(1137,\cdot)\) \(\chi_{2888}(1145,\cdot)\) \(\chi_{2888}(1689,\cdot)\) \(\chi_{2888}(1833,\cdot)\) \(\chi_{2888}(2265,\cdot)\) \(\chi_{2888}(2761,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | \(\Q(\zeta_{19})^+\) |
Values on generators
\((2167,1445,2529)\) → \((1,1,e\left(\frac{5}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 2888 }(1689, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) |
sage: chi.jacobi_sum(n)