Properties

Label 2888.333
Modulus 28882888
Conductor 152152
Order 1818
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2888, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,17]))
 
pari: [g,chi] = znchar(Mod(333,2888))
 

Basic properties

Modulus: 28882888
Conductor: 152152
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ152(29,)\chi_{152}(29,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2888.s

χ2888(333,)\chi_{2888}(333,\cdot) χ2888(477,)\chi_{2888}(477,\cdot) χ2888(1021,)\chi_{2888}(1021,\cdot) χ2888(1029,)\chi_{2888}(1029,\cdot) χ2888(2293,)\chi_{2888}(2293,\cdot) χ2888(2789,)\chi_{2888}(2789,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.0.735565072612935262326166126592.1

Values on generators

(2167,1445,2529)(2167,1445,2529)(1,1,e(1718))(1,-1,e\left(\frac{17}{18}\right))

First values

aa 1-11133557799111113131515171721212323
χ2888(333,a) \chi_{ 2888 }(333, a) 1-111e(79)e\left(\frac{7}{9}\right)e(1118)e\left(\frac{11}{18}\right)e(23)e\left(\frac{2}{3}\right)e(59)e\left(\frac{5}{9}\right)e(56)e\left(\frac{5}{6}\right)e(29)e\left(\frac{2}{9}\right)e(718)e\left(\frac{7}{18}\right)e(49)e\left(\frac{4}{9}\right)e(49)e\left(\frac{4}{9}\right)e(89)e\left(\frac{8}{9}\right)
sage: chi.jacobi_sum(n)
 
χ2888(333,a)   \chi_{ 2888 }(333,a) \; at   a=\;a = e.g. 2