Properties

Label 28900.19401
Modulus 2890028900
Conductor 1717
Order 44
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,3]))
 
pari: [g,chi] = znchar(Mod(19401,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 1717
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ17(4,)\chi_{17}(4,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.o

χ28900(14701,)\chi_{28900}(14701,\cdot) χ28900(19401,)\chi_{28900}(19401,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.4913.1

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,1,i)(1,1,-i)

First values

aa 1-1113377991111131319192121232327272929
χ28900(19401,a) \chi_{ 28900 }(19401, a) 1111i-iii1-1ii111-111iiiii-i
sage: chi.jacobi_sum(n)
 
χ28900(19401,a)   \chi_{ 28900 }(19401,a) \; at   a=\;a = e.g. 2