Properties

Label 28900.2089
Modulus 2890028900
Conductor 72257225
Order 680680
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(680))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,204,535]))
 
pari: [g,chi] = znchar(Mod(2089,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 72257225
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 680680
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ7225(2089,)\chi_{7225}(2089,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.ff

χ28900(9,)\chi_{28900}(9,\cdot) χ28900(189,)\chi_{28900}(189,\cdot) χ28900(229,)\chi_{28900}(229,\cdot) χ28900(389,)\chi_{28900}(389,\cdot) χ28900(529,)\chi_{28900}(529,\cdot) χ28900(569,)\chi_{28900}(569,\cdot) χ28900(689,)\chi_{28900}(689,\cdot) χ28900(729,)\chi_{28900}(729,\cdot) χ28900(869,)\chi_{28900}(869,\cdot) χ28900(909,)\chi_{28900}(909,\cdot) χ28900(1029,)\chi_{28900}(1029,\cdot) χ28900(1069,)\chi_{28900}(1069,\cdot) χ28900(1209,)\chi_{28900}(1209,\cdot) χ28900(1369,)\chi_{28900}(1369,\cdot) χ28900(1409,)\chi_{28900}(1409,\cdot) χ28900(1589,)\chi_{28900}(1589,\cdot) χ28900(1709,)\chi_{28900}(1709,\cdot) χ28900(1929,)\chi_{28900}(1929,\cdot) χ28900(2089,)\chi_{28900}(2089,\cdot) χ28900(2229,)\chi_{28900}(2229,\cdot) χ28900(2269,)\chi_{28900}(2269,\cdot) χ28900(2389,)\chi_{28900}(2389,\cdot) χ28900(2429,)\chi_{28900}(2429,\cdot) χ28900(2569,)\chi_{28900}(2569,\cdot) χ28900(2609,)\chi_{28900}(2609,\cdot) χ28900(2729,)\chi_{28900}(2729,\cdot) χ28900(2769,)\chi_{28900}(2769,\cdot) χ28900(2909,)\chi_{28900}(2909,\cdot) χ28900(3109,)\chi_{28900}(3109,\cdot) χ28900(3409,)\chi_{28900}(3409,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ680)\Q(\zeta_{680})
Fixed field: Number field defined by a degree 680 polynomial (not computed)

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,e(310),e(107136))(1,e\left(\frac{3}{10}\right),e\left(\frac{107}{136}\right))

First values

aa 1-1113377991111131319192121232327272929
χ28900(2089,a) \chi_{ 28900 }(2089, a) 1111e(603680)e\left(\frac{603}{680}\right)e(61136)e\left(\frac{61}{136}\right)e(263340)e\left(\frac{263}{340}\right)e(609680)e\left(\frac{609}{680}\right)e(7785)e\left(\frac{77}{85}\right)e(141340)e\left(\frac{141}{340}\right)e(57170)e\left(\frac{57}{170}\right)e(509680)e\left(\frac{509}{680}\right)e(449680)e\left(\frac{449}{680}\right)e(643680)e\left(\frac{643}{680}\right)
sage: chi.jacobi_sum(n)
 
χ28900(2089,a)   \chi_{ 28900 }(2089,a) \; at   a=\;a = e.g. 2