Properties

Label 28900.2089
Modulus $28900$
Conductor $7225$
Order $680$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(680))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,204,535]))
 
pari: [g,chi] = znchar(Mod(2089,28900))
 

Basic properties

Modulus: \(28900\)
Conductor: \(7225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(680\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{7225}(2089,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.ff

\(\chi_{28900}(9,\cdot)\) \(\chi_{28900}(189,\cdot)\) \(\chi_{28900}(229,\cdot)\) \(\chi_{28900}(389,\cdot)\) \(\chi_{28900}(529,\cdot)\) \(\chi_{28900}(569,\cdot)\) \(\chi_{28900}(689,\cdot)\) \(\chi_{28900}(729,\cdot)\) \(\chi_{28900}(869,\cdot)\) \(\chi_{28900}(909,\cdot)\) \(\chi_{28900}(1029,\cdot)\) \(\chi_{28900}(1069,\cdot)\) \(\chi_{28900}(1209,\cdot)\) \(\chi_{28900}(1369,\cdot)\) \(\chi_{28900}(1409,\cdot)\) \(\chi_{28900}(1589,\cdot)\) \(\chi_{28900}(1709,\cdot)\) \(\chi_{28900}(1929,\cdot)\) \(\chi_{28900}(2089,\cdot)\) \(\chi_{28900}(2229,\cdot)\) \(\chi_{28900}(2269,\cdot)\) \(\chi_{28900}(2389,\cdot)\) \(\chi_{28900}(2429,\cdot)\) \(\chi_{28900}(2569,\cdot)\) \(\chi_{28900}(2609,\cdot)\) \(\chi_{28900}(2729,\cdot)\) \(\chi_{28900}(2769,\cdot)\) \(\chi_{28900}(2909,\cdot)\) \(\chi_{28900}(3109,\cdot)\) \(\chi_{28900}(3409,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{680})$
Fixed field: Number field defined by a degree 680 polynomial (not computed)

Values on generators

\((14451,24277,23701)\) → \((1,e\left(\frac{3}{10}\right),e\left(\frac{107}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 28900 }(2089, a) \) \(1\)\(1\)\(e\left(\frac{603}{680}\right)\)\(e\left(\frac{61}{136}\right)\)\(e\left(\frac{263}{340}\right)\)\(e\left(\frac{609}{680}\right)\)\(e\left(\frac{77}{85}\right)\)\(e\left(\frac{141}{340}\right)\)\(e\left(\frac{57}{170}\right)\)\(e\left(\frac{509}{680}\right)\)\(e\left(\frac{449}{680}\right)\)\(e\left(\frac{643}{680}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 28900 }(2089,a) \;\) at \(\;a = \) e.g. 2