from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28900, base_ring=CyclotomicField(680))
M = H._module
chi = DirichletCharacter(H, M([0,204,535]))
pari: [g,chi] = znchar(Mod(2089,28900))
χ28900(9,⋅)
χ28900(189,⋅)
χ28900(229,⋅)
χ28900(389,⋅)
χ28900(529,⋅)
χ28900(569,⋅)
χ28900(689,⋅)
χ28900(729,⋅)
χ28900(869,⋅)
χ28900(909,⋅)
χ28900(1029,⋅)
χ28900(1069,⋅)
χ28900(1209,⋅)
χ28900(1369,⋅)
χ28900(1409,⋅)
χ28900(1589,⋅)
χ28900(1709,⋅)
χ28900(1929,⋅)
χ28900(2089,⋅)
χ28900(2229,⋅)
χ28900(2269,⋅)
χ28900(2389,⋅)
χ28900(2429,⋅)
χ28900(2569,⋅)
χ28900(2609,⋅)
χ28900(2729,⋅)
χ28900(2769,⋅)
χ28900(2909,⋅)
χ28900(3109,⋅)
χ28900(3409,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(14451,24277,23701) → (1,e(103),e(136107))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ28900(2089,a) |
1 | 1 | e(680603) | e(13661) | e(340263) | e(680609) | e(8577) | e(340141) | e(17057) | e(680509) | e(680449) | e(680643) |