Properties

Label 28900.22143
Modulus 2890028900
Conductor 340340
Order 88
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28900, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,6,1]))
 
Copy content pari:[g,chi] = znchar(Mod(22143,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 340340
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 88
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ340(43,)\chi_{340}(43,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 28900.ba

χ28900(16607,)\chi_{28900}(16607,\cdot) χ28900(19807,)\chi_{28900}(19807,\cdot) χ28900(22143,)\chi_{28900}(22143,\cdot) χ28900(28143,)\chi_{28900}(28143,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.1641354692000000.1

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,i,e(18))(-1,-i,e\left(\frac{1}{8}\right))

First values

aa 1-1113377991111131319192121232327272929
χ28900(22143,a) \chi_{ 28900 }(22143, a) 1111e(78)e\left(\frac{7}{8}\right)e(58)e\left(\frac{5}{8}\right)i-ie(38)e\left(\frac{3}{8}\right)i-ii-i1-1e(58)e\left(\frac{5}{8}\right)e(58)e\left(\frac{5}{8}\right)e(18)e\left(\frac{1}{8}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ28900(22143,a)   \chi_{ 28900 }(22143,a) \; at   a=\;a = e.g. 2