Properties

Label 28900.22143
Modulus $28900$
Conductor $340$
Order $8$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,6,1]))
 
pari: [g,chi] = znchar(Mod(22143,28900))
 

Basic properties

Modulus: \(28900\)
Conductor: \(340\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{340}(43,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.ba

\(\chi_{28900}(16607,\cdot)\) \(\chi_{28900}(19807,\cdot)\) \(\chi_{28900}(22143,\cdot)\) \(\chi_{28900}(28143,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.1641354692000000.1

Values on generators

\((14451,24277,23701)\) → \((-1,-i,e\left(\frac{1}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 28900 }(22143, a) \) \(1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(-i\)\(e\left(\frac{3}{8}\right)\)\(-i\)\(-i\)\(-1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 28900 }(22143,a) \;\) at \(\;a = \) e.g. 2