Properties

Label 28900.23119
Modulus 2890028900
Conductor 17001700
Order 1010
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,9,5]))
 
pari: [g,chi] = znchar(Mod(23119,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 17001700
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1700(1019,)\chi_{1700}(1019,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.bh

χ28900(5779,)\chi_{28900}(5779,\cdot) χ28900(11559,)\chi_{28900}(11559,\cdot) χ28900(17339,)\chi_{28900}(17339,\cdot) χ28900(23119,)\chi_{28900}(23119,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.0.1109263281250000000000.3

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,e(910),1)(-1,e\left(\frac{9}{10}\right),-1)

First values

aa 1-1113377991111131319192121232327272929
χ28900(23119,a) \chi_{ 28900 }(23119, a) 1-111e(310)e\left(\frac{3}{10}\right)1-1e(35)e\left(\frac{3}{5}\right)e(25)e\left(\frac{2}{5}\right)e(110)e\left(\frac{1}{10}\right)e(710)e\left(\frac{7}{10}\right)e(45)e\left(\frac{4}{5}\right)e(910)e\left(\frac{9}{10}\right)e(910)e\left(\frac{9}{10}\right)e(310)e\left(\frac{3}{10}\right)
sage: chi.jacobi_sum(n)
 
χ28900(23119,a)   \chi_{ 28900 }(23119,a) \; at   a=\;a = e.g. 2