Properties

Label 28900.23449
Modulus 2890028900
Conductor 8585
Order 1616
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,8,15]))
 
pari: [g,chi] = znchar(Mod(23449,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 8585
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1616
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ85(74,)\chi_{85}(74,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.bp

χ28900(249,)\chi_{28900}(249,\cdot) χ28900(4549,)\chi_{28900}(4549,\cdot) χ28900(5649,)\chi_{28900}(5649,\cdot) χ28900(7449,)\chi_{28900}(7449,\cdot) χ28900(16249,)\chi_{28900}(16249,\cdot) χ28900(18049,)\chi_{28900}(18049,\cdot) χ28900(19149,)\chi_{28900}(19149,\cdot) χ28900(23449,)\chi_{28900}(23449,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.0.1118134004496021794140625.1

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,1,e(1516))(1,-1,e\left(\frac{15}{16}\right))

First values

aa 1-1113377991111131319192121232327272929
χ28900(23449,a) \chi_{ 28900 }(23449, a) 1-111e(716)e\left(\frac{7}{16}\right)e(1316)e\left(\frac{13}{16}\right)e(78)e\left(\frac{7}{8}\right)e(916)e\left(\frac{9}{16}\right)iie(18)e\left(\frac{1}{8}\right)iie(916)e\left(\frac{9}{16}\right)e(516)e\left(\frac{5}{16}\right)e(316)e\left(\frac{3}{16}\right)
sage: chi.jacobi_sum(n)
 
χ28900(23449,a)   \chi_{ 28900 }(23449,a) \; at   a=\;a = e.g. 2