Properties

Label 28900.2889
Modulus 2890028900
Conductor 425425
Order 1010
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,5]))
 
pari: [g,chi] = znchar(Mod(2889,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 425425
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ425(339,)\chi_{425}(339,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.be

χ28900(2889,)\chi_{28900}(2889,\cdot) χ28900(8669,)\chi_{28900}(8669,\cdot) χ28900(20229,)\chi_{28900}(20229,\cdot) χ28900(26009,)\chi_{28900}(26009,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.10.1083264923095703125.1

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,e(310),1)(1,e\left(\frac{3}{10}\right),-1)

First values

aa 1-1113377991111131319192121232327272929
χ28900(2889,a) \chi_{ 28900 }(2889, a) 1111e(35)e\left(\frac{3}{5}\right)11e(15)e\left(\frac{1}{5}\right)e(310)e\left(\frac{3}{10}\right)e(710)e\left(\frac{7}{10}\right)e(25)e\left(\frac{2}{5}\right)e(35)e\left(\frac{3}{5}\right)e(45)e\left(\frac{4}{5}\right)e(45)e\left(\frac{4}{5}\right)e(110)e\left(\frac{1}{10}\right)
sage: chi.jacobi_sum(n)
 
χ28900(2889,a)   \chi_{ 28900 }(2889,a) \; at   a=\;a = e.g. 2