Properties

Label 28900.29
Modulus $28900$
Conductor $7225$
Order $1360$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(1360))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,136,625]))
 
pari: [g,chi] = znchar(Mod(29,28900))
 

Basic properties

Modulus: \(28900\)
Conductor: \(7225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1360\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{7225}(29,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.fl

\(\chi_{28900}(29,\cdot)\) \(\chi_{28900}(109,\cdot)\) \(\chi_{28900}(129,\cdot)\) \(\chi_{28900}(209,\cdot)\) \(\chi_{28900}(269,\cdot)\) \(\chi_{28900}(309,\cdot)\) \(\chi_{28900}(369,\cdot)\) \(\chi_{28900}(469,\cdot)\) \(\chi_{28900}(589,\cdot)\) \(\chi_{28900}(609,\cdot)\) \(\chi_{28900}(669,\cdot)\) \(\chi_{28900}(789,\cdot)\) \(\chi_{28900}(809,\cdot)\) \(\chi_{28900}(889,\cdot)\) \(\chi_{28900}(929,\cdot)\) \(\chi_{28900}(989,\cdot)\) \(\chi_{28900}(1009,\cdot)\) \(\chi_{28900}(1129,\cdot)\) \(\chi_{28900}(1229,\cdot)\) \(\chi_{28900}(1269,\cdot)\) \(\chi_{28900}(1289,\cdot)\) \(\chi_{28900}(1329,\cdot)\) \(\chi_{28900}(1389,\cdot)\) \(\chi_{28900}(1469,\cdot)\) \(\chi_{28900}(1489,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1360})$
Fixed field: Number field defined by a degree 1360 polynomial (not computed)

Values on generators

\((14451,24277,23701)\) → \((1,e\left(\frac{1}{10}\right),e\left(\frac{125}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 28900 }(29, a) \) \(-1\)\(1\)\(e\left(\frac{217}{1360}\right)\)\(e\left(\frac{199}{272}\right)\)\(e\left(\frac{217}{680}\right)\)\(e\left(\frac{231}{1360}\right)\)\(e\left(\frac{331}{340}\right)\)\(e\left(\frac{159}{680}\right)\)\(e\left(\frac{303}{340}\right)\)\(e\left(\frac{791}{1360}\right)\)\(e\left(\frac{651}{1360}\right)\)\(e\left(\frac{877}{1360}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 28900 }(29,a) \;\) at \(\;a = \) e.g. 2