Properties

Label 28900.3467
Modulus 2890028900
Conductor 17001700
Order 2020
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,13,10]))
 
pari: [g,chi] = znchar(Mod(3467,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 17001700
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1700(67,)\chi_{1700}(67,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.bv

χ28900(3467,)\chi_{28900}(3467,\cdot) χ28900(4623,)\chi_{28900}(4623,\cdot) χ28900(9247,)\chi_{28900}(9247,\cdot) χ28900(10403,)\chi_{28900}(10403,\cdot) χ28900(15027,)\chi_{28900}(15027,\cdot) χ28900(16183,)\chi_{28900}(16183,\cdot) χ28900(21963,)\chi_{28900}(21963,\cdot) χ28900(26587,)\chi_{28900}(26587,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.20.6152325135647583007812500000000000000000000.1

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,e(1320),1)(-1,e\left(\frac{13}{20}\right),-1)

First values

aa 1-1113377991111131319192121232327272929
χ28900(3467,a) \chi_{ 28900 }(3467, a) 1111e(1120)e\left(\frac{11}{20}\right)iie(110)e\left(\frac{1}{10}\right)e(25)e\left(\frac{2}{5}\right)e(720)e\left(\frac{7}{20}\right)e(15)e\left(\frac{1}{5}\right)e(45)e\left(\frac{4}{5}\right)e(320)e\left(\frac{3}{20}\right)e(1320)e\left(\frac{13}{20}\right)e(45)e\left(\frac{4}{5}\right)
sage: chi.jacobi_sum(n)
 
χ28900(3467,a)   \chi_{ 28900 }(3467,a) \; at   a=\;a = e.g. 2