Properties

Label 28900.y
Modulus 2890028900
Conductor 8585
Order 88
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2,3]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(2157,28900))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 2890028900
Conductor: 8585
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 85.k
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.0.6411541765625.1

Characters in Galois orbit

Character 1-1 11 33 77 99 1111 1313 1919 2121 2323 2727 2929
χ28900(2157,)\chi_{28900}(2157,\cdot) 1-1 11 e(18)e\left(\frac{1}{8}\right) e(38)e\left(\frac{3}{8}\right) ii e(58)e\left(\frac{5}{8}\right) ii i-i 1-1 e(38)e\left(\frac{3}{8}\right) e(38)e\left(\frac{3}{8}\right) e(38)e\left(\frac{3}{8}\right)
χ28900(5357,)\chi_{28900}(5357,\cdot) 1-1 11 e(58)e\left(\frac{5}{8}\right) e(78)e\left(\frac{7}{8}\right) ii e(18)e\left(\frac{1}{8}\right) ii i-i 1-1 e(78)e\left(\frac{7}{8}\right) e(78)e\left(\frac{7}{8}\right) e(78)e\left(\frac{7}{8}\right)
χ28900(7693,)\chi_{28900}(7693,\cdot) 1-1 11 e(38)e\left(\frac{3}{8}\right) e(18)e\left(\frac{1}{8}\right) i-i e(78)e\left(\frac{7}{8}\right) i-i ii 1-1 e(18)e\left(\frac{1}{8}\right) e(18)e\left(\frac{1}{8}\right) e(18)e\left(\frac{1}{8}\right)
χ28900(13693,)\chi_{28900}(13693,\cdot) 1-1 11 e(78)e\left(\frac{7}{8}\right) e(58)e\left(\frac{5}{8}\right) i-i e(38)e\left(\frac{3}{8}\right) i-i ii 1-1 e(58)e\left(\frac{5}{8}\right) e(58)e\left(\frac{5}{8}\right) e(58)e\left(\frac{5}{8}\right)