Properties

Label 2898.1903
Modulus $2898$
Conductor $1449$
Order $66$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([22,33,21]))
 
pari: [g,chi] = znchar(Mod(1903,2898))
 

Basic properties

Modulus: \(2898\)
Conductor: \(1449\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1449}(454,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2898.cp

\(\chi_{2898}(97,\cdot)\) \(\chi_{2898}(475,\cdot)\) \(\chi_{2898}(517,\cdot)\) \(\chi_{2898}(727,\cdot)\) \(\chi_{2898}(769,\cdot)\) \(\chi_{2898}(895,\cdot)\) \(\chi_{2898}(1147,\cdot)\) \(\chi_{2898}(1399,\cdot)\) \(\chi_{2898}(1483,\cdot)\) \(\chi_{2898}(1525,\cdot)\) \(\chi_{2898}(1735,\cdot)\) \(\chi_{2898}(1861,\cdot)\) \(\chi_{2898}(1903,\cdot)\) \(\chi_{2898}(2029,\cdot)\) \(\chi_{2898}(2113,\cdot)\) \(\chi_{2898}(2365,\cdot)\) \(\chi_{2898}(2407,\cdot)\) \(\chi_{2898}(2491,\cdot)\) \(\chi_{2898}(2659,\cdot)\) \(\chi_{2898}(2869,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((1289,829,1891)\) → \((e\left(\frac{1}{3}\right),-1,e\left(\frac{7}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2898 }(1903, a) \) \(1\)\(1\)\(e\left(\frac{16}{33}\right)\)\(e\left(\frac{13}{66}\right)\)\(e\left(\frac{41}{66}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{32}{33}\right)\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{5}{66}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{65}{66}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2898 }(1903,a) \;\) at \(\;a = \) e.g. 2