Properties

Label 2898.2351
Modulus $2898$
Conductor $1449$
Order $66$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,33,3]))
 
pari: [g,chi] = znchar(Mod(2351,2898))
 

Basic properties

Modulus: \(2898\)
Conductor: \(1449\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1449}(902,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2898.cl

\(\chi_{2898}(83,\cdot)\) \(\chi_{2898}(293,\cdot)\) \(\chi_{2898}(419,\cdot)\) \(\chi_{2898}(797,\cdot)\) \(\chi_{2898}(839,\cdot)\) \(\chi_{2898}(1049,\cdot)\) \(\chi_{2898}(1091,\cdot)\) \(\chi_{2898}(1217,\cdot)\) \(\chi_{2898}(1469,\cdot)\) \(\chi_{2898}(1721,\cdot)\) \(\chi_{2898}(1805,\cdot)\) \(\chi_{2898}(1847,\cdot)\) \(\chi_{2898}(2057,\cdot)\) \(\chi_{2898}(2183,\cdot)\) \(\chi_{2898}(2225,\cdot)\) \(\chi_{2898}(2351,\cdot)\) \(\chi_{2898}(2435,\cdot)\) \(\chi_{2898}(2687,\cdot)\) \(\chi_{2898}(2729,\cdot)\) \(\chi_{2898}(2813,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((1289,829,1891)\) → \((e\left(\frac{1}{6}\right),-1,e\left(\frac{1}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2898 }(2351, a) \) \(-1\)\(1\)\(e\left(\frac{25}{66}\right)\)\(e\left(\frac{19}{33}\right)\)\(e\left(\frac{31}{66}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{25}{33}\right)\)\(e\left(\frac{65}{66}\right)\)\(e\left(\frac{7}{66}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{29}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2898 }(2351,a) \;\) at \(\;a = \) e.g. 2