from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([44,0,30]))
pari: [g,chi] = znchar(Mod(2815,2898))
Basic properties
Modulus: | \(2898\) | |
Conductor: | \(207\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(33\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{207}(124,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2898.by
\(\chi_{2898}(85,\cdot)\) \(\chi_{2898}(169,\cdot)\) \(\chi_{2898}(211,\cdot)\) \(\chi_{2898}(463,\cdot)\) \(\chi_{2898}(547,\cdot)\) \(\chi_{2898}(673,\cdot)\) \(\chi_{2898}(715,\cdot)\) \(\chi_{2898}(841,\cdot)\) \(\chi_{2898}(1051,\cdot)\) \(\chi_{2898}(1093,\cdot)\) \(\chi_{2898}(1177,\cdot)\) \(\chi_{2898}(1429,\cdot)\) \(\chi_{2898}(1681,\cdot)\) \(\chi_{2898}(1807,\cdot)\) \(\chi_{2898}(1849,\cdot)\) \(\chi_{2898}(2059,\cdot)\) \(\chi_{2898}(2101,\cdot)\) \(\chi_{2898}(2479,\cdot)\) \(\chi_{2898}(2605,\cdot)\) \(\chi_{2898}(2815,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | 33.33.70011645999218458416472683122408534303895571350166174758601569.1 |
Values on generators
\((1289,829,1891)\) → \((e\left(\frac{2}{3}\right),1,e\left(\frac{5}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2898 }(2815, a) \) | \(1\) | \(1\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{2}{33}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{26}{33}\right)\) |
sage: chi.jacobi_sum(n)