Properties

Label 2898.53
Modulus $2898$
Conductor $483$
Order $66$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([33,44,57]))
 
pari: [g,chi] = znchar(Mod(53,2898))
 

Basic properties

Modulus: \(2898\)
Conductor: \(483\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{483}(53,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2898.cv

\(\chi_{2898}(53,\cdot)\) \(\chi_{2898}(107,\cdot)\) \(\chi_{2898}(359,\cdot)\) \(\chi_{2898}(431,\cdot)\) \(\chi_{2898}(557,\cdot)\) \(\chi_{2898}(935,\cdot)\) \(\chi_{2898}(1115,\cdot)\) \(\chi_{2898}(1187,\cdot)\) \(\chi_{2898}(1367,\cdot)\) \(\chi_{2898}(1493,\cdot)\) \(\chi_{2898}(1745,\cdot)\) \(\chi_{2898}(1943,\cdot)\) \(\chi_{2898}(1997,\cdot)\) \(\chi_{2898}(2123,\cdot)\) \(\chi_{2898}(2195,\cdot)\) \(\chi_{2898}(2321,\cdot)\) \(\chi_{2898}(2501,\cdot)\) \(\chi_{2898}(2573,\cdot)\) \(\chi_{2898}(2627,\cdot)\) \(\chi_{2898}(2825,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((1289,829,1891)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{19}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2898 }(53, a) \) \(1\)\(1\)\(e\left(\frac{23}{33}\right)\)\(e\left(\frac{31}{33}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{7}{33}\right)\)\(e\left(\frac{19}{66}\right)\)\(e\left(\frac{13}{33}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{28}{33}\right)\)\(e\left(\frac{31}{66}\right)\)\(e\left(\frac{19}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2898 }(53,a) \;\) at \(\;a = \) e.g. 2