from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,44,57]))
pari: [g,chi] = znchar(Mod(53,2898))
Basic properties
Modulus: | \(2898\) | |
Conductor: | \(483\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(66\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{483}(53,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2898.cv
\(\chi_{2898}(53,\cdot)\) \(\chi_{2898}(107,\cdot)\) \(\chi_{2898}(359,\cdot)\) \(\chi_{2898}(431,\cdot)\) \(\chi_{2898}(557,\cdot)\) \(\chi_{2898}(935,\cdot)\) \(\chi_{2898}(1115,\cdot)\) \(\chi_{2898}(1187,\cdot)\) \(\chi_{2898}(1367,\cdot)\) \(\chi_{2898}(1493,\cdot)\) \(\chi_{2898}(1745,\cdot)\) \(\chi_{2898}(1943,\cdot)\) \(\chi_{2898}(1997,\cdot)\) \(\chi_{2898}(2123,\cdot)\) \(\chi_{2898}(2195,\cdot)\) \(\chi_{2898}(2321,\cdot)\) \(\chi_{2898}(2501,\cdot)\) \(\chi_{2898}(2573,\cdot)\) \(\chi_{2898}(2627,\cdot)\) \(\chi_{2898}(2825,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | Number field defined by a degree 66 polynomial |
Values on generators
\((1289,829,1891)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{19}{22}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2898 }(53, a) \) | \(1\) | \(1\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{19}{22}\right)\) |
sage: chi.jacobi_sum(n)