from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([44,22,9]))
pari: [g,chi] = znchar(Mod(79,2898))
Basic properties
Modulus: | \(2898\) | |
Conductor: | \(1449\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(66\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1449}(79,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2898.da
\(\chi_{2898}(67,\cdot)\) \(\chi_{2898}(79,\cdot)\) \(\chi_{2898}(205,\cdot)\) \(\chi_{2898}(319,\cdot)\) \(\chi_{2898}(457,\cdot)\) \(\chi_{2898}(571,\cdot)\) \(\chi_{2898}(697,\cdot)\) \(\chi_{2898}(709,\cdot)\) \(\chi_{2898}(835,\cdot)\) \(\chi_{2898}(1075,\cdot)\) \(\chi_{2898}(1201,\cdot)\) \(\chi_{2898}(1213,\cdot)\) \(\chi_{2898}(1339,\cdot)\) \(\chi_{2898}(1579,\cdot)\) \(\chi_{2898}(1717,\cdot)\) \(\chi_{2898}(1831,\cdot)\) \(\chi_{2898}(1969,\cdot)\) \(\chi_{2898}(2587,\cdot)\) \(\chi_{2898}(2725,\cdot)\) \(\chi_{2898}(2839,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | Number field defined by a degree 66 polynomial |
Values on generators
\((1289,829,1891)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{3}\right),e\left(\frac{3}{22}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2898 }(79, a) \) | \(-1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{47}{66}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{35}{66}\right)\) | \(e\left(\frac{32}{33}\right)\) |
sage: chi.jacobi_sum(n)