Properties

Label 2898.79
Modulus $2898$
Conductor $1449$
Order $66$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([44,22,9]))
 
pari: [g,chi] = znchar(Mod(79,2898))
 

Basic properties

Modulus: \(2898\)
Conductor: \(1449\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1449}(79,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2898.da

\(\chi_{2898}(67,\cdot)\) \(\chi_{2898}(79,\cdot)\) \(\chi_{2898}(205,\cdot)\) \(\chi_{2898}(319,\cdot)\) \(\chi_{2898}(457,\cdot)\) \(\chi_{2898}(571,\cdot)\) \(\chi_{2898}(697,\cdot)\) \(\chi_{2898}(709,\cdot)\) \(\chi_{2898}(835,\cdot)\) \(\chi_{2898}(1075,\cdot)\) \(\chi_{2898}(1201,\cdot)\) \(\chi_{2898}(1213,\cdot)\) \(\chi_{2898}(1339,\cdot)\) \(\chi_{2898}(1579,\cdot)\) \(\chi_{2898}(1717,\cdot)\) \(\chi_{2898}(1831,\cdot)\) \(\chi_{2898}(1969,\cdot)\) \(\chi_{2898}(2587,\cdot)\) \(\chi_{2898}(2725,\cdot)\) \(\chi_{2898}(2839,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((1289,829,1891)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{3}\right),e\left(\frac{3}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2898 }(79, a) \) \(-1\)\(1\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{8}{33}\right)\)\(e\left(\frac{19}{66}\right)\)\(e\left(\frac{47}{66}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{4}{33}\right)\)\(e\left(\frac{16}{33}\right)\)\(e\left(\frac{35}{66}\right)\)\(e\left(\frac{32}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2898 }(79,a) \;\) at \(\;a = \) e.g. 2