sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([44,22,9]))
pari:[g,chi] = znchar(Mod(79,2898))
χ2898(67,⋅)
χ2898(79,⋅)
χ2898(205,⋅)
χ2898(319,⋅)
χ2898(457,⋅)
χ2898(571,⋅)
χ2898(697,⋅)
χ2898(709,⋅)
χ2898(835,⋅)
χ2898(1075,⋅)
χ2898(1201,⋅)
χ2898(1213,⋅)
χ2898(1339,⋅)
χ2898(1579,⋅)
χ2898(1717,⋅)
χ2898(1831,⋅)
χ2898(1969,⋅)
χ2898(2587,⋅)
χ2898(2725,⋅)
χ2898(2839,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1289,829,1891) → (e(32),e(31),e(223))
a |
−1 | 1 | 5 | 11 | 13 | 17 | 19 | 25 | 29 | 31 | 37 | 41 |
χ2898(79,a) |
−1 | 1 | e(223) | e(225) | e(338) | e(6619) | e(6647) | e(113) | e(334) | e(3316) | e(6635) | e(3332) |
sage:chi.jacobi_sum(n)