Properties

Label 2898.853
Modulus $2898$
Conductor $1449$
Order $66$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([44,33,6]))
 
pari: [g,chi] = znchar(Mod(853,2898))
 

Basic properties

Modulus: \(2898\)
Conductor: \(1449\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1449}(853,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2898.cm

\(\chi_{2898}(13,\cdot)\) \(\chi_{2898}(223,\cdot)\) \(\chi_{2898}(265,\cdot)\) \(\chi_{2898}(349,\cdot)\) \(\chi_{2898}(601,\cdot)\) \(\chi_{2898}(853,\cdot)\) \(\chi_{2898}(979,\cdot)\) \(\chi_{2898}(1021,\cdot)\) \(\chi_{2898}(1231,\cdot)\) \(\chi_{2898}(1273,\cdot)\) \(\chi_{2898}(1651,\cdot)\) \(\chi_{2898}(1777,\cdot)\) \(\chi_{2898}(1987,\cdot)\) \(\chi_{2898}(2155,\cdot)\) \(\chi_{2898}(2239,\cdot)\) \(\chi_{2898}(2281,\cdot)\) \(\chi_{2898}(2533,\cdot)\) \(\chi_{2898}(2617,\cdot)\) \(\chi_{2898}(2743,\cdot)\) \(\chi_{2898}(2785,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((1289,829,1891)\) → \((e\left(\frac{2}{3}\right),-1,e\left(\frac{1}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2898 }(853, a) \) \(-1\)\(1\)\(e\left(\frac{61}{66}\right)\)\(e\left(\frac{16}{33}\right)\)\(e\left(\frac{7}{66}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{28}{33}\right)\)\(e\left(\frac{10}{33}\right)\)\(e\left(\frac{25}{66}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{61}{66}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2898 }(853,a) \;\) at \(\;a = \) e.g. 2