from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(29, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([27]))
pari: [g,chi] = znchar(Mod(15,29))
Basic properties
Modulus: | \(29\) | |
Conductor: | \(29\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(28\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 29.f
\(\chi_{29}(2,\cdot)\) \(\chi_{29}(3,\cdot)\) \(\chi_{29}(8,\cdot)\) \(\chi_{29}(10,\cdot)\) \(\chi_{29}(11,\cdot)\) \(\chi_{29}(14,\cdot)\) \(\chi_{29}(15,\cdot)\) \(\chi_{29}(18,\cdot)\) \(\chi_{29}(19,\cdot)\) \(\chi_{29}(21,\cdot)\) \(\chi_{29}(26,\cdot)\) \(\chi_{29}(27,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{28})\) |
Fixed field: | Number field defined by a degree 28 polynomial |
Values on generators
\(2\) → \(e\left(\frac{27}{28}\right)\)
Values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 29 }(15, a) \) | \(-1\) | \(1\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{3}{28}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)