Properties

Label 29.15
Modulus $29$
Conductor $29$
Order $28$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(29, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([27]))
 
pari: [g,chi] = znchar(Mod(15,29))
 

Basic properties

Modulus: \(29\)
Conductor: \(29\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 29.f

\(\chi_{29}(2,\cdot)\) \(\chi_{29}(3,\cdot)\) \(\chi_{29}(8,\cdot)\) \(\chi_{29}(10,\cdot)\) \(\chi_{29}(11,\cdot)\) \(\chi_{29}(14,\cdot)\) \(\chi_{29}(15,\cdot)\) \(\chi_{29}(18,\cdot)\) \(\chi_{29}(19,\cdot)\) \(\chi_{29}(21,\cdot)\) \(\chi_{29}(26,\cdot)\) \(\chi_{29}(27,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\(2\) → \(e\left(\frac{27}{28}\right)\)

Values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 29 }(15, a) \) \(-1\)\(1\)\(e\left(\frac{27}{28}\right)\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{3}{28}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 29 }(15,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 29 }(15,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 29 }(15,·),\chi_{ 29 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 29 }(15,·)) \;\) at \(\; a,b = \) e.g. 1,2