Properties

Label 2925.1291
Modulus 29252925
Conductor 29252925
Order 3030
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,6,5]))
 
pari: [g,chi] = znchar(Mod(1291,2925))
 

Basic properties

Modulus: 29252925
Conductor: 29252925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2925.fv

χ2925(121,)\chi_{2925}(121,\cdot) χ2925(556,)\chi_{2925}(556,\cdot) χ2925(706,)\chi_{2925}(706,\cdot) χ2925(1141,)\chi_{2925}(1141,\cdot) χ2925(1291,)\chi_{2925}(1291,\cdot) χ2925(2311,)\chi_{2925}(2311,\cdot) χ2925(2461,)\chi_{2925}(2461,\cdot) χ2925(2896,)\chi_{2925}(2896,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(326,352,2251)(326,352,2251)(e(13),e(15),e(16))(e\left(\frac{1}{3}\right),e\left(\frac{1}{5}\right),e\left(\frac{1}{6}\right))

First values

aa 1-11122447788111114141616171719192222
χ2925(1291,a) \chi_{ 2925 }(1291, a) 1111e(710)e\left(\frac{7}{10}\right)e(25)e\left(\frac{2}{5}\right)e(16)e\left(\frac{1}{6}\right)e(110)e\left(\frac{1}{10}\right)e(710)e\left(\frac{7}{10}\right)e(1315)e\left(\frac{13}{15}\right)e(45)e\left(\frac{4}{5}\right)e(1415)e\left(\frac{14}{15}\right)e(1330)e\left(\frac{13}{30}\right)e(25)e\left(\frac{2}{5}\right)
sage: chi.jacobi_sum(n)
 
χ2925(1291,a)   \chi_{ 2925 }(1291,a) \; at   a=\;a = e.g. 2